3.1

Answers Home Work 3

Because of symmetric condition, half portion is considered in the energy calculation.
(1) Displacement diagram of symmetrical mechanism is shown in Fig.1-1. L $^{\text {L }}$

Fig.1-1

Table 1-1

slip plane	shear stress c_{u}	length L	displacement $\delta \mathrm{w}$	$\delta \mathrm{W}=\mathrm{c}_{\mathrm{u}} \mathrm{L} \delta \mathrm{w}$
ac	c_{u}	$\mathrm{B} /(2 \cos \alpha)$	$\delta \mathrm{w}_{\mathrm{a}} \sin \alpha$	$\mathrm{Bc}_{\mathrm{u}} \delta \mathrm{w}_{\mathrm{a}} \sin \alpha /(2 \cos \alpha)$
Fan	c_{u}	$\mathrm{R}=\mathrm{B} /(2 \cos \alpha)$ $\delta \theta=1 / 2 \pi-\alpha+\beta$	$\delta \mathrm{w}_{\mathrm{a}} \cos \alpha$	$\mathrm{Bc}_{\mathrm{u}} \delta \mathrm{w}_{\mathrm{a}}(1 / 2 \pi-\alpha+\beta)$
ad	-	-	0	0
ed	c_{u}	$\mathrm{B} \cos \beta /(2 \cos \alpha \sin \beta)$	$\delta \mathrm{w}_{\mathrm{a}} \cos \alpha$	$\mathrm{Bc}_{\mathrm{u}} \delta \mathrm{w}_{\mathrm{a}} \cos \beta /(2 \sin \beta)$

(2) From Table 1-1, total internal dissipation δW for the whole portion is given by eq(1)

$$
\begin{equation*}
\delta W=B \delta w_{a} c_{u}\left(\frac{\sin \alpha}{\cos \alpha}+\pi-2 \alpha+2 \beta+\frac{\cos \beta}{\sin \beta}\right) \tag{1}
\end{equation*}
$$

(3) By equating the external energy $\delta E\left(=F_{u} \delta w_{\alpha}\right)$ to internal dissipation (eq.(1), the following bearing capacity equation is obtained.

$$
\begin{equation*}
F_{u}=B c_{u}\left(\frac{\sin \alpha}{\cos \alpha}+\pi-2 \alpha+2 \beta+\frac{\cos \beta}{\sin \beta}\right) \tag{2}
\end{equation*}
$$

(4) Minimum upper bound of bearing capacity of the mechanism is given by the following condition.

$$
\begin{align*}
& \frac{d F_{u}}{d \alpha}=0 \quad(3)=>\frac{1}{\cos ^{2} \alpha}-2=0, \quad 2-\frac{1}{\sin ^{2} \beta}=0 \quad \Rightarrow \quad \alpha=\beta=\pi / \tag{4}\\
& \frac{d F_{u}}{d \beta}=0
\end{align*}
$$

inserting eq.
(4) into eq.(2) Minimum F_{u} is

$$
F_{u}=B c_{u}(\pi+2)
$$

This F_{u} is the same as that of the non-symmetrical mechanism given in page 171.

3.2

In this calculation, the half portion of the failure mechanism is considered because of its symmetry.

Fig.2.1

Fig.2.2

Fig.2.3
(1) From Fig. 2.1 and 2.2, displacement diagram can be drawn as shown in Fig.2.3.
(2) From the geometry shown in Fig.2.3,

$$
\begin{equation*}
\delta w_{0}=\frac{\delta w_{f}}{2 \cos \left(45^{\circ}+\phi / 2\right)} \text { (1) and } \delta w_{b}=\delta w_{0} \exp \left(\frac{\pi}{2} \tan \phi\right) \tag{2}
\end{equation*}
$$

from (1) and (2)

$$
\begin{equation*}
\delta w_{p}=\frac{\delta w_{f}}{2} \frac{\cos (\pi / 4-\phi / 2)}{\cos (\pi / 4+\phi / 2)} \exp \left(\frac{\pi}{2} \tan \phi\right)=\frac{\delta w_{f}}{2} \tan (\pi / 4+\phi / 2) \exp \left(\frac{\pi}{2} \tan \phi\right) \tag{3}
\end{equation*}
$$

and also from Fig.1,

$$
\begin{equation*}
r_{b}=r_{a} \exp \left(\frac{\pi}{2} \tan \phi\right) \text { and } L=B \tan \left(45^{\circ}+\phi / 2\right) \exp \left(\frac{\pi}{2} \tan \phi\right) \tag{4}
\end{equation*}
$$

For dry weightless soil, $\mathrm{u}=\gamma=0$,

$$
\begin{align*}
& \delta W=0 \tag{5}\\
& \delta E / 2=\frac{F_{u}}{2} \delta w_{f}-p L \delta w_{p} \tag{6}
\end{align*}
$$

using eqs. (3) and (4)
$\delta E=F_{u} \delta w_{f}-p B \delta w_{f} \tan ^{2}\left(45^{\circ}+\phi / 2\right) \exp (\pi \tan \phi)(7)$
(3) equating $\delta \mathrm{E}=\delta \mathrm{W}$ and making use of eqs. (5) and (7)

$$
\begin{equation*}
F_{u}=p B \tan ^{2}\left(45^{\circ}+\phi / 2\right) \exp (\pi \tan \phi) \tag{8}
\end{equation*}
$$

Again F_{u} for symmetrical mechanism is the same as that of the non-symmetrical mechanism given in page 217 for weightless and non-cohesive soil.

